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 

Abstract— Quantum Bernoulli noise is the family of 

annihilation and creation operators acting on Bernoulli 

functionals,which satisfy the anti-commutation relations (ACR) 

in equal-time . In this paper , we study spectral structure of 

operators related to quantum Bernoulli noise . Among others, 

we obtain spectral theorems for these operators. 

 
Index Terms—Quantum Bernoulli noise, Spectral theorem. 

MSC(2010):—60H40, 47B38. 

 

I. INTRODUCTION 

  Quantum Bernoulli noise [5] is the family of 

annihilation and creation operators acting on Bernoulli 

functionals (Bernoulli annihilators and creators for short) , 

which satisfy the anti-commutation relations (ACR) in 

equal-time, and can be viewed as a discrete-time analog of 

quantum white noise
]2[
. In the past two decades, quantum 

Bernoulli noise has found wide application in many problems 

in mathematical physics . Privault [4] used Bernoulli 

annihilators to define his gradient operation on Bernoulli 

functionals. Nourdin , Peccati and Reinert [3] investigated 

normal approximation of Rademacher functionals (a special 

case of Bernoulli functionals) with the help of Bernoulli 

annihilators. In 2016, Wang and Ye [8] constructed a 

quantum walk model in terms of quantum Bernoulli noise . 

The same year , Wang and Chen [6] applied quantum 

Bernoulli noise to the study of quantum Markov semigroups . 

There are other interesting application results of quantum 

Bernoulli noise (see, e.g[1]). 

Let  0|,   kkk  
be quantum Bernoulli noise. In a 

recent paper [7] , it was shown that there exists a close link 

between operators of form  



n

k

kk

0  

and probability 

distributions of the quantum walk introduced in
]8[
. In this 

note , we study operators of form  



n

k

kk

0  

and other 

operators related to quantum Bernoulli noise from a  

viewpoint of spectral theory . Among others , we obtain 

spectral theorems for these operators.  

Notation and conventions.Throughout,   always  
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denotes the set of all integers , whilemeans the set of all 

nonnegative integers.We denote by  the finite power set of 

 , namely  

    #,| ,                          1.1  

where  #  means the cardinality of  as a finite set .Unless 

otherwise stated , letters like j , k and n stand for nonnegative 

integers , namely elements of  . 

II. FUNDAMENTALS ABOUT QBN 

In the present section , we recall some fundamental 

notions and facts about quantum Bernoulli noises. 

Let  


  1,1
 
be the set of all mappings 

:  1,1 , and  
0nn  

the sequence of canonical 

projections on  given by 

    .,   nn  
Denote by the -field on generated by the sequence 

  .
0nn  

Let   0nnp
 
be a given sequence of positive 

numbers with the property that 10  np
 
for all 0n .It 

is known [4] that there exists a unique probability measure 

 on  such that 

       .1,,,,, 2

1

2

1

21
1

21

1
jj

k jj

k

j
knnn pp












for jn ,   kjj  11,1  with ji nn  when 

i j
 
and k  with  1k . Thus we come to a 

probability measure space  ,,
 
, which is referred to 

as the Bernoulli space and random variables on it are known 

as Bernoulli functionals. 

Let  
0


nn be the sequence of random variables 

on  ,,
 
defined by 

0,
2




 n
qp

pq

nn

nnn
n


. 

where nn pq 1
 
. Clearly  

0


nn  is an 

independent sequence of random variables , and , for each 

nn  ,0 has a probability distribution 

  nnn p  ,   nnn q  /1 , 0n  

 with nnn pq .To be convenient , we set n  

 nkk  0;
 
, the  -field over   generated by 

 
nkk 


0  

, for 0n  and  .,1 
 

Let  2L
 
be the space of square integrable complex 

-valued Bernoulli functionals, namely 

 2L  ,,2  L . 
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We denote by ,  the usual inner product of the space 

 2L
 
and  by 

 
the corresponding norm . It is known [4] 

that   has the chaotic representation property . Thus  2L  

has    |  as its orthonormal basis , where 1
 

and ,







i

i , , which shows that  2L  

is an infinite dimensional, separable complex Hilbert space. 

For integer 0k  , there exists a bounded linear 

operator k  
on  2L such that     

                    ,,\   kk k1  

where  kk \\  
 
and )(k1

 
the indicator of   as a 

subset of  . Denoting by 
 k  the adjoint operator of 

k  
, 

one has 

   kk k 

   11 ,   , 

where  kk    . In the language of physics , the 

operator k  
and its adjoint 

 k  
are referred to as the 

annihilation operator and creation operator at site k , 

respectively. 

The family  0|,   kkk  is known as quantum  

Bernoulli noise (QBN) . The next lemma shows that QBN 

satisfies the canonical anti-commutation relations (CAR) in 

equal-time. 

Lemma 2.1
]5[
 Let lk, . Then it holds true that 

kllk  ,
  kllk ,  lkkllk  

    
 1.2  

and 

0 

kkkk , Ikkkk  
,                       2.2  

where I is the identity operator on  2L .
 

III. MAIN RESULTS 

In the present section , we state and prove our main 

results about spectral structure of operators related to 

quantum Bernoulli noise. 

 

In the following , for convenience , we write k  

kk 
 
for each 0k . We note that 

kk 
, Ik 2

, jkkj  , 0, kj .          1.3  

In other words , the family  0|  kk  
is a commutative 

family consisting of self-adjoint unitary operators on  2L . 

Proposition 3.1 Let 0k  and define  kk IP 
2
1

 
, 

 kk IQ 
2
1

 
. Then both kP

 
and kQ

 
are projection 

operators on  2L
 
, and moreover they satisfy relations 

IQP kk 
 
and 0 kkkk PQQP . 

Proof. Clearly , by their definitions , we immediately have 

IQP kk  , kk PP 

 
and kk QQ 

. On the other hand , a 

straightforward computation gives 

    kkkkk PIIP  22
4

1
2

4

1 22
, 

which together with kk PP 

 
implies that 

kP
 
is a projection 

operator . Similarly we can show that 
kQ

 
is also a projection 

operator . Finally , we have 

     ,0
4

1

4

1 2  kkkkkkk IIIQP

which implies that 0kk PQ . 

By convention , we denote by  A
 
the spectrum of an 

operator A , and by  A
 
its resolvent set . The next 

proposition gives the spectrum and spectral decomposition of 

operator k . 

Proposition 3.2 Let 0k .Then, for each   1,1\C  ,
 

the operator kI  has a bounded inverse operator of the 

following form 

              

  kk II 








1

1

1 22

1




 .              2.3  

And moreover k  
has spectrum    1,1k

 
and 

spectral decomposition kkk QP  . 

Proof.For each  1,1\C  , by computation we find 

  













 kk II

1

1

1 22 


  

 kk II 













 





1

1

1 22
 

                I , 

which means that kI 
 
has a bounded inverse operator 

and its inverse operator takes the form 

  kk II 








1

1

1 22

1




 . 

Thus    k1,1\C  
 
, which implies that  k   

 1,1  . On the other hand , for  with k  , we have  

   kkk \\   ,

  kkk \\   , 

which implies that  -1,1  k . Thus    1,1k . It 

follows immediately from the definitions of kP
 
and 

kQ that kkk QP  . 

It follows easily from  2.3 that the family 

 0|, kQP kk  
is a commutative one in the sense that 

jkkj PPPP  , jkkj PQQP  , ,jkkj QQQQ  .0, kj                                                           

 3.3  

In view of this , we introduce the following notation: 

IQP   , where I denotes the empty set , and 









k

kPP , 







k

kQQ                    4.3  

for  with  . Clearly, the family  |,QP
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is also commutative , namely 

 PPPP  ,  PQQP  ,  QQQQ                 5.3  

hold for all  , . 

Proposition 3.3  Let 0n  and  nn ,,1,0 
 
. Then 

 \n
QP   

is a projection operator on  2L
 
for each   

n . Moreover , 0\\   nn
QPQP

 
whenever  , 

 

n  with  
 
, and  IQP

n

n








 \ .                     6.3  

Proof.  Let n . Then , by Proposition 3.1 and relations 

 3.3
 
, we know that both P  

and \n
Q  

are projection 

operators , which together with relations  5.3
 
implies that 

 \n
QP   

is also a projection operator . If n ,
 
with 

   
, then     \n

 
or      \n , which 

together with Proposition 3.1 implies that  \n
QP   

0  or 

0\   n
QP

 
, which then implies 

0\\   nn
QPQP . 

Finally , by using the relations described in Proposition 3.1 as 

well as commutative Relations  5.3  , we come to 

  






 
n

n
QPQPII

n

k

kk

n



 \

0

1
. 

This completes the proof. 

Proposition 3.4  Let 0n  and  nn ,,1,0  . Define 

an operator-valued mapping  n  
on  

 10|12  njnj
 
as 

  12 njn
 

10,
,#

\  


 njQP
n

n

j 

 ,     7.3  

where  #
 
denotes the cardinality of   as a finite set.Then 

 n  
is a projection operator-valued measure on 

 10|12  njnj
 
,  namely it satisfies that 

(i)  12 njn  
is a projection operator for each j

 
with 

10  nj ; 

(ii)     01212  nknj nn  whenever kj  , 0

1,  nkj ; 

(iii) and   Inj
n

j n 



12

1

0
 . 

Proof.This is an immediate consequence of Proposition 3.3. 

Theorem3.5 0n and  nn ,,1,0  .Define nS

 


n

k k0
. Then nS

 
has a spectral decomposition of  the 

following form 

   1212
1

0






njnjS n

n

j

n  .                     8.3  

In particular , the spectrum  nS
 
of nS

 
coincides with 

 10|12  njnj . 

Proof. For each nk  , define a function  

 1,1: nk  as   1kk  
and   1jk for j   

n with kj  . Then by Proposition 3.1 we have 

  



n

kjj

jkj QjP
,0



 

=  



n

kjj

jj QP
,0

 

                    =
nI  

= ,I nk 0 .                                              9.3
 

On the other hand , for nk 
 
, by using relations  9.3  we 

get             k   kkk QkP 
 

  



n

j

jkj QjP
0

  

                         
 

 


 


1

0 ,#

\\
n

j j

nk

n

n
QPf



 , 

where    






\

\
ni

knk if . 

Thus 



n

k

knS
0

 

    
 

 




 


n

k

n

j j

nk

n

n
QPf

0

1

0 ,#

\\


  10.3  

    
 

  


 















1

0 ,#

\

0

\
n

j j

n

k

nk

n

n
QPf



 . 

Note that , for n , a careful computation gives 

 



n

k

nkf
0

\

 

  
 


n

k i

k

n

i
0 \



 

                                      \#1# n  

                                  1#2  n , 

which together with  10.3 and  7.3 implies that 

 

nS  
 

 


 


1

0 ,#

\12
n

j j n

n
QPnj



  

    

                      1212
1

0






njnj
n

j

n . 

This completes the proof. 
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